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INTRODUCTION 
 
Deregulated energy market puts a lot of pressure on every day operation of power utilities world wide. 
Increased energy demand and processes on the energy market require good planning of utility 
operation. Planning regards economic, as well as, technical issues. It should provide targeted financial 
margin and high availability of a power grid. Therefore, correct engagement of economical and 
technical resources, of power utilities, is very important. Due to these facts, short term load prediction 
is of great importance in deregulated energy market. Artificial neural network (ANN) based models are 
good choice for load prediction tasks, Bansal and Pandey (1), having in mind nonlinear and non 
stationary nature of a load signal Krunic (2), Khotanzad (3).  Further, power utilities treat load 
information as a complex-valued signal. Thus, models for load prediction should be defined in complex 
domain.  
Development of an ANN model in complex domain requires appropriate activation function (AF) at the 
neurons within the ANN. It would be good to have bounded and analytic complex function, on the 
whole complex plane C, as a neuron AF. However, the Liouville’s theorem says that the only bounded 
and analytic function, on the complex set C, is a constant Mandic (4), Kim and Adali (5). Therefore, 
meromorphic functions are chosen as an AF within complex-valued ANNs. Meromorphic functions are 
analytic almost everywhere, with an exception of  a discrete subset of the set C. These functions tend 
to infinity, at those singularities, thus avoiding the possibility of encountering essential singularities (4), 
(5).  
There are reported results Krcmar (6), Krcmar and Krunic (7), where different neural adaptive 
structures were employed for complex-valued load prediction. In the paper (6), a simple, complex-
valued, neural adaptive filter was applied to one step a head load prediction. Further, it recommends 
application of fully complex AFs. On the other hand, application of a multi layer perceptron (MLP), in 
short term complex-valued load prediction, was presented in (7). As in (6), load prediction depends 
only on the previous load data and AFs are fully complex (7).  
MLP allows simultaneous processing of different data. So, each load data can be presented to a MLP 
with its time stamp. This fact can help to cope with non stationary load signals. Also, complex-valued 
time series prediction can be performed by application of dual univariate AF (DUAF). Within this setup, 



real and imaginary parts of a signal are processed separately (4), (6). Through this approach, one can 
avoid problems associated with the choice of a complex-valued AF, and reduce complex-valued load 
prediction task to real-valued time series prediction. Thus, DUAF approach will give two predictors, 
with possible loss of information, due to decoupling of real and imaginary part of the load signal. 
To this cause, we compare performance of two artificial neural network models. Load data, in both 
models, are presented to the ANN with its time stamp. The first model implements dual univariate 
approach, i.e. the model consists of two artificial neural networks. Training algorithm in this case is the 
backpropagation (BP) algorithm. The second model has fully complex AFs at network neurons, and it 
is trained by the complex backpropagation (CBP) algorithm. The analysis is carried out on the metered 
values of a complex-valued energy, in a distribution, medium voltage, grid. 
 
 
STRUCTURE AND OPERATION OF MLP 
 
The structure of a MLP, with one hidden layer, is given on Fig. 1, Haykin (8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 – STRUCTURE OF A MLP WITH ONE HIDDEN LAYER 
 
Operation of the MLP, given on the Fig. 1, can be described by the following equations. 
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where y(k) denotes MLP output, () denotes AF of the neurons, net1(k) is input to the MLP output 
neuron, nethi(k) is input to the ith neuron in the hidden layer , k is a discrete time instant,       
wh(k)=[wh1(k), wh2(k),…, whN(k)]T is the vector of weights which connects neurons in the hidden layer 
and MLP output, wij(k)=[wij1(k), wij2(k),…, wijM(k)]T is the vector of weights which connects MLP inputs 
and jth neuron in the MLP hidden layer, N denotes number of neurons in the MLP hidden layer, M 
denotes length of the MLP input vector, ()T denotes vector transpose, x(k)=[x1(k), x2(k),…, xM(k)]T is 
the MLP input vector, and xh(k)=[xh1(k), xh2(k),…, xhM(k)]T is vector that contains outputs of the neurons 
in the MLP hidden layer. 
 
 
BACKPROPAGATION LEARNING ALGORITHM 
 
The BP learning algorithm for a MLP, performs gradient descent search in the space of weights (8). 
Thus, it minimizes the criterion 
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where denotes absolute value and 
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defines error at the output neuron of MLP and d(k) denotes some teaching (desired) signal. Weight 
update is given by the following equation 
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Computation of weight correction ∆w(k) depends on position of the weight in the network structure.  
Thus, for the weights, located between the hidden layer and the output, we have 
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and in the case of the CBP learning algorithm it becomes 
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where  is the step size, ()’ denotes the first derivative and ()*   denotes complex conjugate. For the 
weights between MLP input and hidden layer computation of the weight correction is as follows 
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while for the CBP it becomes 
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and 1 ≤ j ≤ N. In order to stop the learning procedure it is necessary to define stopping criteria. Usual 
choices for the stopping criteria is minimum value of the index (5), averaged over the training set, 
flatness of the error surface, or combination of the previous ones.  
 
 
EXPERIMENTAL ANALYSIS 
 
 
Structure of the input data 
 
Structure of the input data is of high importance for the overall performance of the ANN model. Within 
this paper we have adopted structure of the input load data as in (2), i.e. in order to produce load 
prediction at time instant (k+1), ANN model uses load data at time instants (k), (k -1), (k-2), (k -24), (k -
25), (k-26), (k -168), (k -169), (k-170), (k -192), (k-193) and (k -194). Further, each load data is 
accompanied with its time stamp. Time stamp is presented to the ANN model through 12 inputs. 
Identification of the hour is given by 5 binary inputs, while identification of the day is given by 7 inputs. 
If we numerate days of the week by numbers 1 to 7, then we set appropriate input to 1, while the rest 
of 6 inputs we set to 0. The load data is average hourly normalized power. The signals were 
normalized with respect to the maximum of the load absolute value. Load data is metered at the 10 kV 
feeder, in the Transformer station Banja Luka 2. The normalized test complex-valued load signal is 
shown on the Fig. 2 and Fig. 3.  
 
 
Training set and training procedure 
 
The training set contains load data for the last two weeks, prior to the time instant that marks the first 
prediction. Within the experiments, logistic function was chosen as AF at the network neurons, i.e. 
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Gain of the AF was set to =4. Number of the neurons in the hidden layer was N=6 and learning rate  
 

 
FIGURE 2 – REAL PART OF THE TEST LOAD SIGNAL 
 

 
FIGURE 3 – IMAGINARY PART OF THE TEST LOAD SIGNAL 



 
was =0.002. We applied modification of the BP algorithm to include momentum parameter, due to the 
fact that it stabilizes the learning process. The experiments were carried out with value of the 
momentum parameter =0.8. The stopping criteria was defined by the minimum average value, over 
the epoch, of the index (5),   Jmin=0.0007.  
 
 
 
Experimental results 
 
The experiments were carried out, as short term complex-valued load prediction, through 100 
independent runs, i.e. with 100 different sets of initial weights. Outputs of the network, i.e. predictions, 
after the training procedure,  were fed back as network inputs in order to obtain next prediction. 
Prediction horizon was up to 48 hours.  Average performance, of the analyzed ANN models, is shown 
on the Fig. 4 to 7.  
Average absolute percentage error for the ANN model with fully complex AF, was 6.01%, for 
prediction horizon of 24 hours, and on prediction horizon of 48 hours, it was 6.62%. Regarding 
predictor based on the ANN model with DUAF, average absolute percentage error on the 24 hours 
prediction horizon was 7.43%, ad on the 48 hours prediction horizon it was 7.69%.  
 

 
FIGURE 4– PERFORMEANCE OF THE ANN MODEL WITH FULLY COMPLEX AF, REAL PART OF                           

THE LOAD SIGNAL 
 



 
FIGURE 5– PERFORMANCE OF THE ANN MODEL WITH FULLY COMPLEX AF, IMAGINARY                                    

PART OF THE LOAD SIGNAL 
 

 
FIGURE 6– PERFORMANCE OF THE ANN MODEL WITH DUAF, REAL                                               

PART OF THE LOAD SIGNAL 



 
FIGURE 7– PERFORMANCE OF THE ANN MODEL WITH DUAF, IMAGINARY PART OF THE LOAD 

SIGNAL 
 
 
CONCLUSION 
 
Two ANN based models for complex-valued short term load prediction has been proposed and 
analyzed. The predictors have a MLP structure, with one hidden layer. The first model is fully complex, 
while the second one is based on the DUAF approach, i.e. it consists of two real-valued predictors. 
The predictions are based on the load data, accompanied with their time stamp, in order to cope with 
non stationary load signals. Backpropagation learning algorithm, with momentum parameter, has been 
employed for model training. Also, the structure of the predictor inputs, size of the training set and 
number of neurons in the hidden layer has been given. Performance of the predictor has been tested 
on the metered values of complex-valued load, at a medium voltage grid. Proposed fully complex ANN 
model shows better performance. 
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